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ABSTRACT 

Let K CR 3 be a three-dimensional  convex body such that,  for every isometry p 
of R 3, the boundaries  of K and pK meet  in a connected set. Then  K is a parallel 
set of some possibly degenerate  l inesegment.  

I. Introduction 

Unless otherwise stated, we shall adopt the terminology of B. GriJnbaum's 

book [6]. By a convex body in 8 3 w e  understand a compact convex subset of R 3 

with nonempty interior. 

DEFINITION 1. A convex body K in R 3 has the intersection property, if for 

every isometry p of R 3, the boundaries bd(K) and bd(pK) have a connected 
intersection. 

It was asked by T. Bonnesen and W. Fenchel whether the Euclidean balls are 

characterized among all convex bodies in R 3 by the intersection property, see 

page 141 of [3]. However, as H. Hadwiger [7] pointed out, each parallel body of 

a linesegment enjoys the same property. The question, whether there are any 

other examples, has been posed again by J. J. Sch~iffer [10], and shall be 

answered in the negative here. There are a number of further problems related 

to this result, two of which have been solved recently. P. Goodey [5] shows that a 

convex body K in R n for which bd(K) f3 int(gK) is a topological ball whenever g 

is a rigid motion, must be a Euclidean ball. Ch. Senn [11] characterizes the vector 

sums of a ray and a Euclidean ball as the only unbounded closed convex sets in 
R 3 with the intersection property. 
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2. Strictly convex bodies 

Our main purpose here is a proof of the following result. Remember  that a 

convex body K is called strictly convex, if every boundary point of K is an 

exposed point of K. 

PROPOSITION 1. Let K be a convex body in R 3. I f  K is strictly convex and has 

the intersection property, then K is a Euclidean ball 

Let us first introduce some additional notation. If v is a unit vector in R 3 w e  set 

v l =  {x E R 3 : ( x , v ) =  0} and denote by zrv :R 3---> v I the orthogonal projection 

onto vi .  The shadow boundary of a convex body K above the plane E is the set 

E(K,E) of all points p ~ K for which ~'v(p)E relbd(Tro[K]), where v is a unit 

vector with v ~ = E. 

DEFINITION 2. Let K and L be closed convex sets in R 3, having the same 

afline hull E. We say that K surrounds L at the point p ~ E, if there is an open 

neighbourhood U of p in E such that L n U is a proper  subset of K O U, and 

(relbd K)  O L O U is compact and contains the point p. 

With this notion we can express our  basic condition for a convex body to have 

the intersection property. 

LEMMA 1. Let K be a convex body in R 3. Assume that there is an isometry p of 
R 3 and a boundary point p of K such that pK surrounds K at p. Then K does not 

have the intersection property. 

PROOF. Let U be an open neighbourhood of p in R 3 such that (pK O U) 
(K n U), and (bdpK) n K O U is compact, with p E (bdpK) O K n U ~  bdpK. 

There is a point q in (bdpK n U)\K, and therefore we have L3(pK O U)> 
L3(K O U), where L 3 denotes the Lebesgue measure in R 3. Since pK has the 

same Lebesgue measure as K, we cannot have pK D K, thus we find a point r in 

(bdpK O bdK)\U,  r and p lie in different components of bdpK n bdK, and K 

does not have the intersection property. 

PROOF OF PROPOSITION 1. Let us assume that K is a counterexample to 

Proposition 1. An elementary argument shows that no ellipsoid other  than a 

Euclidean ball has the intersection property, so at least one shadowy boundary 

~(K,E)  of K is not contained in a plane [2]. We may assume E = R 2 = lin{ea, e2} 

where we set el = (1,0,0), e2 = (0,1,0), e3 = (0,0,1). Denoting by s the reflection 

at the plane R 2 we set, for ~" ~ R, K(~'): = s[K] + Te3. For p E D : = lre~[K] we 

set 
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h(p):  = inf{a :p + ae3 ~ K} and h(~-)(p): = inf{a :p + ae~ E K(r)) ,  z ~ R. 

We consider the sets L(r):={pED:h(p)<h(r)(p)} and M(~ ' ) :=  

{pED:h(p)>h(~')(p)}, ~-ER. Notice that, for r < c r ,  we always have 
L( r )CL(c r ) ,  M(I")2  M(cr). Set 

r, : = inf{(x, e3): x E X(K, RZ)} and ~'2 : = sup{(x, e3):x E X(K, R2)}. 

Then, clearly, L (~') O relbd(D) # 0 ,  M ( , )  N relbd(D) # 0 ,  whenever 2r~ < ~" < 

2r2. Consider a unit vector u E R 2, and let us say that X CR 2 is dominated by D 

in direction u, if X C int D + R, where R = {au : a => 0} is the ray issuing from the 

origin in direction u. We want to show 

(1) there are a number 1- with 2T~ < r < 2~'2, a component C of L(z) U M(r), 
and a unit vector u E R 2 such that cl(C) is dominated by D in direction u. 

Let us say that a subset N of the circle S ' =  {x E R2:llx II = 1} is spanning, if 

0 E conv(N) but 0 ~ conv(M) for any M C N, M #  N. A spanning set N C S l then 

consists of 2 or 3 elements. A vector n E S ~ is called an outer normal of D at 

p E relbdD, if (n,p)>= (n,q) for all q E D. We now choose ~-E (2zt,2~'z) and a 

component C of L(~'). If z and C do not satisfy (1), we find a spanning subset N 

of S 1 and, for every n E N, a point p (n) E cl(C) n relbd D such that n is an outer 

normal of D at p(n). Since cl[L (~') n relbd D] C L (or) for all ¢r with ~" < ¢r < 2~'2, 

we may assume, by enlarging z if needed, that {p(n): n E N} is contained in 

C O relbd (D). 

Set Y: = {An :n E N,a E [0,1]}. C is an open connected subset of D, so there 

exists an injective continuous map ¢k : Y---~ C with ok(n) = p(n) for all n E N 

and Im(qb) n relbd(D) = {p (n): n E N}. Since ~" E (2,~, 2r2), we have M(~-) # O. 

Choose a component A of M(~-), and notice A n Im($)  = O. By the definition 

of $ and because D = ,r,,[K] inherits the strict convexity from K, we find u E S t 

such that cl(A) is dominated by D in direction u, and (1) follows. 

Let us set, for ~" E R and x E R 2, 

K( r ,x ) :  = K(~')+ x,D(1",x): = ~',3[K(1",x)], 

and denote by h(~' ,x):D(r,  x ) ~  R the height function, given by 

h(~',x)(p): = inf{a :p+ae3EK(z,x)}, pED(1.,x). 

By an arc we understand as usual a homeomorphic image of some compact 

interval I CR. 
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Now we choose ¢,C and u according to (1), and assume first that C is a 

component of L(7), with C O re lbd(D)~  O. 

Co: = {p E C :h(¢) (p) -  h(p) >->_ h(~')(q)- h(q) for all q E C} 

is a compact subset of C, so we find a pair {s,t} of points in C n relbd(D) and 

arcs PCC\Co, Q Ccl(R2\D), both with end points {s,t}, such that {s,t}= 

P n relbd (D) = Q n D, Q is dominated by D in direction u, and Co belongs to 

the bounded component of R2\(P U Q). 

By the definition of Co and P, there exists a number tr E (-oo, z) such that 

h ( t r ) (q )>  h(q) for all q E Co, but h(tr)(p) < h(p) for all p E P. Further, if we 

choose /3 > 0 sufficiently small, we have e C D(tr,/3/z) and h (o-,/3u)(p) < h (p) 
for all p E P, whereas h(m/3u)(q)> h(q), q E Co. Let us also ensure that the arc 

Q mentioned above satisfies (Q\{s,t})C(D(tr,/3u)\D). J :  = P U 0 is a closed 

Jordan curve contained in D(tr,/3u). For each point p E J we have either 

K n ~r~[p] = ~ or h ( p ) >  h(o',/3u)(p), whereas there is some q in the bounded 

component B of R2\J such that q E D  and h(q)<h(m/3u)(q) .  Choose 

qoE B n D such that 

3:=h(o',/3u)(qo)-h(qo)>-_h(tr,/3u)(q)-h(q) f o r a l l q E B N D .  

Then K(tr,/3u) surrounds K + tSe3 at qo+ (h(qo)+ ~)e3, contradicting Lemma 1. 

The case C CL(z) ,  C O r e lbd (D)=  O, is trivial. We find a Jordan curve J C C 

and a number o" E R  with h ( p ) >  h(cr)(p) for all p E J and h ( q ) <  h(tr)(q) for 

some q in the bounded component of R2\J. Finally, if C is a component of M(~'), 

we just interchange the roles of K and s [K]. Thus Proposition 1 is established. 

3. Bodies which are not strictly convex 

Throughout this section we assume that K C R 3 is a convex body, containing a 

linesegment S in its boundary. If u E R 3 iS a unit vector, we denote by l(u) the 

set of all affine isometries p : R 3----~ R 3 which preserve the scalar product with u, 

such that (px, u)= (x,u) for all p E I(u) and x ~ R 3. Furthermore we set, for 

z E R ,  K(u,~-): ={p E K : ( p , u ) =  z}. Recall that u is an outer normal of K at 

p E bdK, if (u,p)>= (u,q) for all q E K. 

LEMMA 2. With the above notation, let u be an outer normal of K at some point 
p E relint S. Assume that, given any neighbourhood N o[ 0 in R, there are a 
number z < 0  in N and an isometry p E I(u) such that, with 1",: = (p,u) + r, 

(2) relint S n relint pS consists of exactly one point, 
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(3) [relint K(u, ~'o)]\pK(u, zo) and 
[relint pK(u, zo)]\K(u, ~'o) are both connected. 

Then K does not have the intersection property. 

PROOF. Call q E bd(K) a smooth point of K if there is a unique outer normal 

of K at q, and call q a vertex of K if the set of all outer normals of K at q is 

twodimensional. Notice first 

(4) if K has the intersection property, then there exists no 

vertex of K. 

Otherwise let q~ be a vertex of K. Let A2CK be a maximal Euclidean ball 

contained in K, and choose q2EA2A bd(K).  By definition of ql there is a 

Euclidean ball A1 which surrounds K at q~, and which has a smaller radius than 

A2. Hence we find an isometry p of R 3 such that pq~ = q2 and pA~ CA2. K 
surrounds pK at q2, which is a contradiction to Lemma 1, and (4) follows. 

Similarly 

(5) if K has the intersection property, then there exists 

no twodimensional face of K. 

Now let p E relint(S) and the unit vector u E R 3 satisfy the assumptions of 

Lemma 2. We can suppose that p is the origin 0 of R 3. 

(6) We may also assume 0 = ¢r , (p)Erel int  ¢r,(K). 

If 0 is a smooth point of K, (6) is satisfied. So let us assume that HI and/-/2 # Hj 

are supporting planes of K, with 0 E H~ N/-/2, and denote by H~ the closed 

halfspace bounded by Hi and containing K. There exists some outer normal v of 

K at 0 such that 0 E relint(rrv(K)). We also choose a unit vector w such that 

lin{w} and aft S are parallel lines. If we find, in every neighbourhood N of 0 in R, 

some number r < 0 such that K(v, r) does not contain a linesegment T whose 

affine hull is parallel to aft $, then v satisfies (2) and (3). The corresponding 

isometry p E I(v) consists of a translation x ~ x + hw, A ~ 0, small, followed by a 

rotation with axis lin{v} and a sufficiently small angle. Otherwise, since 7rw (K) 

has at most countably many vertices, we find ~" < 0 in N such that K(v,z) 
contains a linesegment T with aft(T) parallel to aft& and such that every 

q E relint(T) is a smooth point of K. Choose q E relint(T) arbitrarily, denote by 

H the unique supporting plane of K containing q, and by H ÷ the closed 

halfspace which contains K and is bounded by H. Let r be an arbitrary endpoint 

of the linesegment S. 



76 P. M A N I - L E V I T S K A  Isr. J. Math. 

Let Y be an isometry of R 3, such that y ( r ) = q ,  ~,(H-~OH~)CH ÷, 
H O ~/(H~ n H~) = aft(T). Denoting by L C H the line which is orthogonal to 

aft(T) and contains q, we choose a rotation 13 with axis L such that relint(/3~/S)C 

int(H+). Let a be a translation with a (H)Cint (H+) .  If the angle of/3 is small 

enough, and a is chosen properly, the convex body K surrounds a/37(K ) at 

some point q' close to q. So, according to Lemma l, K does not have the 

intersection property, and it remains to consider the case where (6) holds. 

(7) We may assume S = ~'~(S)Crelint(Tr~K). 

In view of (6) we find, if (7) does not hold, an endpoint r of S and a supporting 

hyperplane H of K with r ~ H and S,~ H. If 0 E relint(S) is not a smooth point 

of K, r is a vertex of K, a case which may be excluded by (4). If 0 is smooth we 

denote by L the supporting plane of K which contains 0 and denote by H + and 

L ÷ the closed halfspaces bounded by H and L containing K. By (5) we may 

assume H n L O K = {r}. As above we find an isometry ~/ of R 3 such that 

y ( r ) = 0 ,  T (H  + o L + ) C L  +, L A T ( H  + N L  +)=af t (S) .  

Then K surrounds TK at q, and this case can again be excluded by Lemma 1. In 

view of (7) we find a neighbourhood N of 0 in R such that 

(8) 7r~(K(u, cr))Crelint¢r~(K), for every cr E N. 

Let us choose z < 0 in N and p E I(u) such that they satisfy the conditions (2) 

and (3) of our lemma. If r~ and r2 are the endpoints of the iinesegment S, we 

denote by C(ri) the unique bounded component  of R3\(bdK U b d p K )  which 

contains r~ in its closure. Then we may assume that 

(9) one of the sets C(r~), i E {1,2}, satisfies 

(x,u} E (0, r), all x E C(ri). 

Otherwise we find piecewise linear maps 4 ' , : [ 0 , 1 ] ~ K  such that 4',(0)= r~, 

(4',(0, u) = ~', Im 4', C{r,} O C(r,), and such that there exists, for every s ~ ~ (0,1], 

a number cr E [z,0) satisfying 4', (~:) E [relint K(u,,r)]\[pK(u, or)]. By condition 

(3) there is also a piecewise linear map $ : [ 0 , 1 ] ~  [relint K(u, ~')]\[pK(u, ~')] with 

$(0) = 4'1(1) and ~0(1) = 4'2(1). We may assume that A = 
• ",[Im(4'l) U Im(4'2)O Im($)] is disjoint to S n pS, hence there exists a Jordan 

curve J C A  U S containing the point of S O oS. Setting, for x E Im(,r.)  and a 

convex body B C R 3, 

h(B)[x]: = inf{A :x - au E B} if x ~ ,r .(B),  and h(n)[x]: = o0 otherwise 
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we derive from (8) that K(u,¢)CK(u, 'q),  whenever 0_- > s ¢ _-> ~ _-> T, and there- 

fore, by the construction of J, 

(10) h(K)[x] <= h(pK)[x], for every x E J. 

Let D be the bounded component  of Im(~,)\J .  By (2) there is a point 

q E D  ripS, and obviously 0 =  h(pK)[q]<h(K)[q].  Setting ~ : =  

sup{h(K)[q]-h(pK)[q]:q Ec lD}  we have tt > 0  and derive from (10) that 

h(K)[qo]-h(pK)[qo]--~,  for some q0~ D. Again using (10)we  see that K 

surrounds p K -  i.tu at the point qo-(h(K)[qo])u. By Lemma 1, K would not 

have the intersection property. So (9) is established. Assume, then, (x, u) E (0, ~') 

for every x ~ C(rl). Consider a point x in the boundary of 7r,(C(rO)Zlm(~r,), 
and set y -- x - (h (K)[x] )u .  By (8) we have ( u , w ) > 0 ,  for every outer normal 

vector w of K at y. Hence y E bd(pK), or else x would belong to 7r,(C(r~)) 
itself, rather than to its boundary. We conclude that h(K)[x]--h(pK)[x] ,  

whereas, obviously, 0 = h(K)[r~] < h(pK)[r~]. Since rz E 7r,(C(r~)) we find, as 

above, a point qoE~r,(C(rO) and a number ~ > 0  such that pK surrounds 

K- i . t u  at qo-(h(pK)[qo])U. By Lemma 1, K does not have the intersection 

property, and Lemma 2 is established. 

Recall that K C R s is a convex body having a linesegment S in its boundary. 

PROPOSITION 2. I[ K has the intersection property, there exist a unit vector 
u E R 3 and a number ~ > 0 such that 

(11) every point p in the shadow boundary E(K, Im(Tr,)) lies 

in a linesegment L C bd K of length a, whose aflfine hull 
is a parallel to lin{u}, 

(12) whenever L C bd K is a linesegment, aft L is a parallel to 
iin{u}. 

PROOF. Choose the unit vector u E R 3 such that lin{u} is parallel to af[S, 

where S is some linesegment in bd K. If a and b are points in R 3 w e  set, for 

T=conv{a,b}, ) t (T):  = Ila- bll. Define a > 0  by 

a : =  sup{)t (K n 1r~m[p]):p E relbd ~r, (K)}. 

The set X: = {p E relbd 7r, (K)  : )t (K n zrS~[p]) = a } is nonvoid and compact. We 

want to show 

(13) X is open in relbd 7r, (K). 

Otherwise there is p E X and a sequence (q~)~N of points q~ E re ibd l r . (K) ,  

converging to p, such that 
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A (K N 7r~'[q,])= :/3, < a, for every i. 

We may assume that u = (1,0,0), p is the origin 0 of R 3 and belongs to relint S, 

S = K n 7r~a[p], and v = (0,0, - 1) is an outer normal of K at 0. Let N be a 

neighbourhood of 0 in R. We find a number ~- < 0 in N and an index i such that 

(q~,v) = z. Choose 3, in the open interval (/3~,a) and define the translation ~ by 

Oh(x) = x + ,/u. Since A(K n ¢r~'[q,])=/3, < 3, and (q ,v)  = r, one of the compo- 

nents of relbd(K(v,r))Orelbd(ckK(v,~')) consists of a single point, whereas 

S n ~bS is a nondegenerate linesegment. We can choose a point m E 
relint(S N ~S) and a rotation p with axis m + lin{v} and sufficiently small angle 

e ~ 0 such that [relint(K(v, ~-))]\p~b (K(v, ~-)) and [relint(p~b (K(v, r)))]\K(v, r) are 

both connected. Here, if one component of relbd(K(v, ~')) n relbd(~bK(v, r)) is a 

linesegment, we have to choose the sign of e appropriately. Then v, S,0, N, r and 

p~b fulfil the requirements of Lemma 2, and K would not have the intersection 

property. So (13) follows. Since X is also compact and nonvoid it coincides with 

relbd(cr, (K)), and (11) is established. If there were a linesegment L Cbd K with 

affL parallel to lin{v} for some unit vector v ~ . { u , -  u}, we could apply the 

analogue of the above argument with v replacing u and would conclude that K 

has a twodimensional face. But this contradicts Lemma 1, compare (5) in the 

proof of Lemma 2. The relation (12), and Proposition 2, are thus established. 

Recall that B CR 3 is a Euclidean ball if 

B = { y ~ R 3 : l l y - P l l < = p } ,  f o r s o m e p E R  3 and p > 0 ,  

and that a Euclidean disc is the intersection of some Euclidean ball B with a 

plane containing its midpoint. Y E R 3 is called a parallel body of the compact 

convex set X, if there is a Euclidean ball B, centered at the origin, such that 

Y = X + B. For the proof of the next result we shall use a few elementary facts 

concerning the curvature of planar convex sets. The reader may consult [1,2,4] 

for a general and thorough exposition of these matters. 

PROPOSITION 3. Let K C R 3 be a convex body which has the intersection 

property. I f  bd K contains a linesegment, then K is a parallel body of some 

linesegment. 

PROOF. Choose a unit vector u E R 3 and the number a > 0 such that K,u  

and a satisfy Proposition 2. Then 

(14) 7r, K is a Euclidean disc. 

Otherwise let D be its circumscribed disc, the smallest Euclidean disc containing 

1r, K. Then there is an arc R C relbd(~ruK) whose endpoints r~,r2 belong to 
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relbd(D) and whose inner points all lie in relintD. By translating D in a 

direction orthogonal to aft{q, r2} we obtain a disc D1, congruent to D, which is 

surrounded by zr, K at some point p~ E R. Similarly there is a disc D2, congruent 

to D, which surrounds ~r,K at some point p2. This allows us to find an isometry p 

of R 3, carrying p2 into p~, such that zr, K surrounds p~',K at p~. K n 1r~[pi] is, by 

our choice of u, a linesegment Si of length a. By the above construction, each 

q E relint S~ is a smooth point of K;  let us denote by v the outer normal of K at 

every q ~ relint S~. We choose an endpoint q2 of S2 and a point q~ E relint S~. 

Denote by z the translation carrying x into x +(ql-q2, u)u. Then there is a 

neighbourhood U of q~ such that (UN~'pK)C(UNK), and (UNTpK)N 
bd(U O K)CS~. Denote by L the line u l n  Im(~-o). We find a rotation tr with 

axis L + q, and some small angle, together with a small translation qb in direction 

- v, such that K surrounds the convex body ~btrzpK at some point q E relint S~, 

close to q. By Lemma 1, K would not have the intersection property. Thus (14) is 

established. Now let w be a unit vector in R 3 such that ( u , w ) = 0 .  Let 

X C Im(1rw) be a Euclidean disc congruent to ~r,K, and set Y = S~ + X, where S~ 

is the iinesegment mentioned above. Then 

(15) 1rwK is par" "lel to Y. 

Otherwise we find, by an argument similar to the one used for the proof of 

(14), some point r ErelbdlrwK and some translate X~ of X such that X~ 

surrounds ~r,~K at r. By the statement (12) of Proposition 2 there is a unique 

point s E bd K such that zrw (s) = r. Let p be an isometry of R 3 such that p(t) = s 

and zrw[pK] = X,, where T is some linesegment in bd(K) and t E relint(T), pK 
obviously surrounds K at s, and, again by Lemma 1, K would not have the 

intersection property. With this contradiction the statement (15) is established 

for every w orthogonal to u. With the aid of [8] we derive from (14) and (15) that 

K is homothetic to T + B ,  where T is any linesegment in b d K  and B a 

Euclidean ball whose diameter coincides with that of ~r,(K). Proposition 3 

follows. 

Proposition 1 and Proposition 3 together yield our main result: If a convex 

body K C R 3 has the intersection property, then it is either a Euclidean ball or a 

parallel body of some linesegment. 

4. Questions 

As the referee has pointed out, the following question remains open: is there a 
convex surface S in R 3 which intersects each of its directly congruent copies in a 
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connected set, but does not bound a parallel set of some linesegment? I think 

that such a surface does not exist, but have no full proof. Notice, however, that S 

would have to be strictly convex, since no reflections are used in the proof of 

Proposition 3. Under appropriate smoothness assumptions the nonexistence of S 

can also be established by classical differential geometric methods. I have not 

explored the corresponding problem in higher dimensions. 
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