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ABSTRACT

Let K CR’ be a three-dimensional convex body such that, for every isometry p
of R?, the boundaries of K and pK meet in a connected set. Then K is a paralle!
set of some possibly degenerate linesegment.

1. Introduction

Unless otherwise stated, we shall adopt the terminology of B. Griinbaum’s

book [6]. By a convex body in R® we understand a compact convex subset of R?
with nonempty interior.

DerINITION 1. A convex body K in R’ has the intersection property, if for

every isometry p of R’, the boundaries bd(K) and bd(pK) have a connected
intersection.

[t was asked by T. Bonnesen and W. Fenchel whether the Euclidean balls are
characterized among all convex bodies in R’ by the intersection property, see
page 141 of [3]. However, as H. Hadwiger [7] pointed out, each paraliel body of
a linesegment enjoys the same property. The question, whether there are any
other examples, has been posed again by J. J. Schiffer [10], and shall be
answered in the negative here. There are a number of further problems related
to this result, two of which have been solved recently. P. Goodey [5] shows that a
convex body K in R” for which bd(K) N int(gK) is a topological ball whenever g
is a rigid motion, must be a Euclidean ball. Ch. Senn [11] characterizes the vector

sums of a ray and a Euclidean ball as the only unbounded closed convex sets in
R’ with the intersection property.
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2. Strictly convex bodies

Our main purpose here is a proof of the following result. Remember that a
convex body K is called strictly convex, if every boundary point of K is an
exposed point of K.

PROPOSITION 1. Let K be a convex body in R*. If K is strictly convex and has
the intersection property, then K is a Euclidean ball.

Let us first introduce some additional notation. If v is a unit vector in R’ we set
v*={x ER’:(x,0) =0} and denote by =, :R’—>v" the orthogonal projection
onto v*. The shadow boundary of a convex body K above the plane E is the set
3(K,E) of all points p € K for which m,(p) € relbd(m,[K]), where v is a unit
vector with v* = E.

DEerINITION 2. Let K and L be closed convex sets in R’ having the same
affine hull E. We say that K surrounds L at the point p € E, if there is an open
neighbourhood U of p in E such that L N U is a proper subset of K N U, and
(relbd K)N L N U is compact and contains the point p.

With this notion we can express our basic condition for a convex body to have
the intersection property.

LEMMA 1. Let K be a convex body in R*. Assume that there is an isometry p of

R’ and a boundary point p of K such that pK surrounds K at p. Then K does not
have the intersection property.

PrOOF. Let U be an open neighbourhood of p in R’ such that (oK N U)D
(K N U), and (bdpK)N K N U is compact, with p € (bdpK)N K N U# bdpK.
There is a point q in (bdpK N U)K, and therefore we have L*(pK N U)>
L*K N U), where L* denotes the Lebesgue measure in R’. Since pK has the
same Lebesgue measure as K, we cannot have pK D K, thus we find a point r in
(bdpK NbAK)\U. r and p lie in different components of bdpK N bdK, and K
does not have the intersection property.

PROOF OF PropOSITION 1. Let us assume that K is a counterexample to
Proposition 1. An elementary argument shows that no ellipsoid other than a
Euclidean ball has the intersection property, so at least one shadow boundary
3(K,E) of K is not contained in a plane {2). We may assume E = R* =lin{e,, e;}
where we set e; = (1,0,0), e; = (0,1,0), e; = (0,0,1). Denoting by s the reflection
at the plane R® we set, for 7 ER, K(r): = s[K] + re;. For p € D : = m[K] we
set
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h(p): =inf{A :p + Ae;E K} and h(r)(p): =inf{A :p+ Aes€ K(7)}, 7ER.

We consider the sets L(r):={p&€D:h(p)<h(r)(p)} and M(r):=
{pED:h(p)>h(r)(p)}, T ER. Notice that, for 1 =0, we always have
L(r)CL(0), M(t)D M(0o). Set

i =inf{(x,e;): x ES(K,R?)} and 1: =sup{(x,e;): x € Z(K,R%)}.

Then, clearly, L(7)Nrelbd(D) # &, M(r) N relbd(D) # &, whenever 27, < 1 <
27,. Consider a unit vector u € R, and let us say that X CR’ is dominated by D
in direction u, if X Cint D + R, where R = {Au : A = 0} is the ray issuing from the
origin in direction u. We want to show

(1) there are a number 7 with 27, < r <27,, a component C of L(t)U M(z),
and a unit vector u € R’ such that cl(C) is dominated by D in direction u.

Let us say that a subset N of the circle $' ={x € R*:||x| = 1} is spanning, if
0 € conv(N) but 0 & conv(M) for any M C N, M# N. A spanning set N CS' then
consists of 2 or 3 elements. A vector n € §' is called an outer normal of D at
p ErelbdD, if (n,p)=(n,q) for all ¢ € D. We now choose 7 € (27,,27,) and a
component C of L(r). If r and C do not satisfy (1), we find a spanning subset N
of §' and, for every n € N, a point p(n) € cl(C) N relbd D such that n is an outer
normal of D at p(n). Since cl[L(r)Nrelbd D] CL(c)for all ¢ with 7 < o <21,
we may assume, by enlarging 7 if needed, that {p(n):n € N} is contained in
C Nrelbd(D).

Set Y:={An:n € N,A €[0,1]}. C is an open connected subset of D, so there
exists an injective continuous map ¢:Y—C with ¢(n)=p(n) forall nEN
and Im(¢) Nrelbd(D)={p(n): n € N}. Since 7 € (271,21;), we have M (1) # .
Choose a component A of M(r), and notice A N Im(¢)= . By the definition
of ¢ and because D = =,[K] inherits the strict convexity from K, we find u € S'
such that cl(A) is dominated by D in direction u, and (1) follows.

Let us set, for r€R and x ER?,

K(r,x):=K(7)+ x,D(1,x): = m.[K(1,x)],
and denote by h(r,x):D(r,x)—R the height function, given by
h(r,x)(p):=inf{A :p +Ae;EK(r,x)}, pED(rx).

By an arc we understand as usual a homeomorphic image of some compact
interval I CR.
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Now we choose 7,C and u according to (1), and assume first that C is a
component of L(r), with C Nrelbd(D) # .

Co:={p € C:h(r)(p)~ h(p) = h(7)(q)~ h(q)forallq € C}

is a compact subset of C, so we find a pair {s,t} of points in C Nrelbd(D) and
arcs P CC\Co, Q Ccl(R\D), both with end points {s,t}, such that {s,z}=
PNrelbd(D)= Q N D, Q is dominated by D in direction u, and C, belongs to
the bounded component of R*(P U Q).

By the definition of C, and P, there exists a number o € (—®,7) such that
h(a)(q)> h(q) for all g € C,, but h(c)(p) < h(p) for all p € P. Further, if we
choose B > 0 sufficiently small, we have P C D(o,Bu) and h(o, Bu)(p)< h(p)
for all p € P, whereas h(o, Bu)(q)> h(q), g € Co. Let us also ensure that the arc
Q mentioned above satisfies (Q\{s,t}) C(D(o,Bu)\D). J:=P U Q is a closed
Jordan curve contained in D(o,Bu). For each point p €J we have either
KN #.l[p] =D or h(p)> h{o, Bu){p), whereas there is some g in the bounded
component B of R?\J such that ¢ €D and h(q)< h(o,Bu)(q). Choose
go € B N D such that

8:=h(o,Bu)(qo)— h(qo) = h(o,Bu)(q)—h(q) forallge BN D.

Then K (o, Bu) surrounds K + e at go+ (h(qo) + 8)es, contradicting Lemma 1.
The case C CL(7), C Nrelbd(D) =, is trivial. We find a Jordan curve J CC
and a number o € R with h(p)> h(c)(p) for all p € J and h(q)< h(o)(q) for
some q in the bounded component of R*\J. Finally, if C is a component of M(7),
we just interchange the roles of K and s[K]. Thus Proposition 1 is established.

3. Bodies which are not strictly convex

Throughout this section we assume that K CR’ is a convex body, containing a
linesegment S in its boundary. If u € R’ is a unit vector, we denote by I(u) the
set of all affine isometries p : R’>— R’ which preserve the scalar product with u,
such that {px,u)={x,u) for all p € I{u) and x ER’. Furthermore we set, for
T ER, K(u,7): ={p € K:(p,u) = 7}. Recall that u is an outer normal of K at
p €bdK, if (u,p)=(u,q) for all g € K.

LEMMA 2. With the above notation, let u be an outer normal of K at some point
p Erelint S. Assume that, given any neighbourhood N of 0 in R, there are a
number 1 <0 in N and an isometry p € I(u) such that, with 7,:={p,u)+,

(2) relint S Nrelint pS consists of exactly one point,
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(3) [relint K(u, 70)]\pK (4, 7o) and
[relint pK (u, 70)\K (u, 7o) are both connected.

Then K does not have the intersection property.

Proor. Call g € bd(K) a smooth point of K if there is a unique outer normal

of K at g, and call q a vertex of K if the set of all outer normals of K at g is
twodimensional. Notice first

(4) if K has the intersection property, then there exists no
vertex of K.

Otherwise let g; be a vertex of K. Let A,CK be a maxima! Euclidean ball
contained in K, and choose g, € A,Nbd(K). By definition of ¢, there is a
Euclidean ball A, which surrounds K at q;, and which has a smaller radius than
A,. Hence we find an isometry p of R’ such that pg, = g, and pA,CA,. K
surrounds pK at g, which is a contradiction to Lemma 1, and (4) follows.
Similarly

(5) if K has the intersection property, then there exists
no twodimensional face of K.

Now let p Erelint(S) and the unit vector u €R’ satisfy the assumptions of
Lemma 2. We can suppose that p is the origin 0 of R’.

(6) We may also assume 0 = m.(p) E relint 7. (K).

If 0 is a smooth point of K, (6) is satisfied. So let us assume that H, and H, # H,
are supporting planes of K, with 0€ H, N H,, and denote by H; the closed
halfspace bounded by H; and containing K. There exists some outer normal v of
K at 0 such that 0 € relint(w,(K)). We also choose a unit vector w such that
lin{w} and aff S are parallel lines. If we find, in every neighbourhood N of 0 in R,
some number 7 <0 such that K(v,7) does not contain a linesegment T whose
affine hull is parallel to aff S, then v satisfies (2) and (3). The corresponding
isometry p € I(v) consists of a translation x » x + Aw, A # 0, small, followed by a
rotation with axis lin{v} and a sufficiently small angle. Otherwise, since ., (K)
has at most countably many vertices, we find 7 <0 in N such that K(v,7)
contains a linesegment T with aff(T) parallel to aff S, and such that every
q € relint(T) is a smooth point of K. Choose q € relint(T) arbitrarily, denote by
H the unique supporting plane of K containing g, and by H* the closed
halfspace which contains K and is bounded by H. Let r be an arbitrary endpoint
of the linesegment S.
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Let y be an isometry of R’, such that y(r)=gq, y(Hi NH;)CH",
H N y(Hy N Hy) = afl(T). Denoting by L CH the line which is orthogonal to
aff(T) and contains q, we choose a rotation B with axis L such that relint(8yS) C
int(H"). Let a be a translation with a (H) Cint(H"). If the angle of B is small
enough, and e is chosen properly, the convex body K surrounds afy(K) at
some point q' close to g. So, according to Lemma 1, K does not have the
intersection property, and it remains to consider the case where (6) holds.

(7) We may assume S = . (S) Crelint(7.K).

In view of (6) we find, if (7) does not hold, an endpoint r of S and a supporting
hyperplane H of K with r € H and SZ H. If 0 € relint(S) is not a smooth point
of K, r is a vertex of K, a case which may be excluded by (4). If 0 is smooth we
denote by L the supporting plane of K which contains 0 and denote by H™ and
L" the closed halfspaces bounded by H and L containing K. By (5) we may
assume HN L N K ={r}. As above we find an isometry y of R’ such that

y(r)=0, y(H'NL")CL*, LNy(H"NL")=afi(S).

Then K surrounds yK at g, and this case can again be excluded by Lemma 1. In
view of (7) we find a neighbourhood N of 0 in R such that

(8) m.(K(u,0))Crelintm, (K), for every o €N.

Let us choose 7 <0 in N and p € I(u) such that they satisfy the conditions (2)
and (3) of our lemma. If r; and r, are the endpoints of the linesegment S, we
denote by C(r) the unique bounded component of R’\(bd K U bd pK) which
contains r; in its closure. Then we may assume that

(9) one of the sets C(r), i €{1,2}, satisfies
(x,u) € (0,7), all x € C(r).

Otherwise we find piecewise linear maps @;:[0,1]— K such that ¢.(0)=r,
(di(1),u) =1, Im¢; C{ri} U C(r;), and such that there exists, for every £ € (0,1],
a number o € [1,0) satisfying ¢:(¢) € [relint K (u,0)]\[pK (4,0)]. By condition
(3) there is also a piecewise linear map ¢ :[0,1]—[relint K (u, 7)\[pK (1, 7)] with
v0)=¢:(1) and yY(1)=¢,(1). We may assume that A=
m.[Im(¢:) U Im(¢,) U Im(y)] is disjoint to S N pS, hence there exists a Jordan
curve J CA U S containing the point of S N pS. Setting, for x € Im(7.) and a
convex body B CR’,

h(B)[x]}: =inf{A :x — Au € B} if x € m,(B), and h(B)[x]: =« otherwise
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we derive from (8) that K(u, £) CK(u, ), whenever 0= ¢ 2 = 7, and there-
fore, by the construction of J,

(10) h(K)[x] = h(pK)[x]., for every x € J.

Let D be the bounded component of Im(m,)\J. By (2) there is a point
qEDNpPS, and obviously 0=h(pK)[gq]<h(K)[q]). Setting pu:
sup{h(K)[q]— h(pK)[q):q EcID} we have u >0 and derive from (10) that
h(K)[qo] — h(pK)[qo} = i, for some ¢, E D. Again using (10) we see that K
surrounds pK — pu at the point qo— (h(K)[qo])u. By Lemma 1, K would not
have the intersection property. So (9) is established. Assume, then, (x,u) € (0, 1)
for every x € C(r)). Consider a point x in the boundary of ., (C(r))) Clm(.),
and set y = x — (h(K)[x])u. By (8) we have (u,w)>0, for every outer normal
vector w of K at y. Hence y € bd(pK), or else x would belong to m.(C(r))
itself, rather than to its boundary. We conclude that h(K)[x]= h(pK)[x],
whereas, obviously, 0 = h(K)[r|] < h(pK)[r]. Since r, € m.(C(r;)) we find, as
above, a point g0 € m.(C(r)) and a number p >0 such that pK surrounds
K — pu at qo— (h(pK)[qo])u. By Lemma 1, K does not have the intersection
property, and Lemma 2 is established.

Recall that K CR’ is a convex body having a linesegment S in its boundary.

PrROPOSITION 2. If K has the intersection property, there exist a unit vector
u €R’ and a number a >0 such that

(11) every point p in the shadow boundary 3(K,Im(mw,)) lies
in a linesegment L Cbd K of length a, whose affine hull
is a parallel to lin{u},

(12) whenever L Cbd K is a linesegment, aft L is a parallel to
lin{u}.

ProOF. Choose the unit vector u €R’ such that lin{u} is parallel to aff S,
where S is some linesegment in bd K. If a and b are points in R* we set, for
T =conv{a, b}, A(T): =|a — b|. Define a >0 by

a:=sup{A(KNx.'[p]):p Erelbd 7. (K)}.

The set X:={p Erelbd 7, (K): A(K N 7.'[p]) = @} is nonvoid and compact. We
want to show

(13) X is open in relbd =, (K).

Otherwise there is p € X and a sequence (gi)ien Of points g; € relbd m.(K),
converging to p, such that
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MKN#[g])=:B<a,  foreveryi

We may assume that u = (1,0,0), p is the origin 0 of R* and belongs to relint S,
S =K Nx.'[p], and v = (0,0, — 1) is an outer normal of K at 0. Let N be a
neighbourhood of § in R. We find a number 7 <0 in N and an index i such that
(g, v) = 7. Choose v in the open interval (8;, a) and define the translation ¢ by
@ (x)=x + yu. Since A(K N 7.'[q:])= B <y and (g, v) = 7, one of the compo-
nents of relbd(K(v, 7)) Nrelbd(¢K(v,7)) consists of a single point, whereas
SNe¢S is a nondegenerate linesegment. We can choose a point m €
relint(S N ¢S) and a rotation p with axis m + lin{v} and sufficiently small angle
¢ # 0 such that [relint(K (v, 7))]\p¢ (K (v, 7)) and [relint(pd (K (v, 7)))\K (v, 7) are
both connected. Here, if one component of relbd(K (v, 7)) N relbd(¢K (v, 7)) is a
linesegment, we have to choose the sign of ¢ appropriately. Then v, S,0, N, 7 and
p@ fulfil the requirements of Lemma 2, and K would not have the intersection
property. So (13) follows. Since X is also compact and nonvoid it coincides with
relbd(m.(K)), and (11) is established. If there were a linesegment L Cbd K with
aff L parallel to lin{v} for some unit vector v& {u, — u}, we could apply the
analogue of the above argument with v replacing u and would conclude that K
has a twodimensional face. But this contradicts Lemma 1, compare (5) in the
proof of Lemma 2. The relation (12), and Proposition 2, are thus established.

Recall that B CR’ is a Euclidean ball if

B={y€R:|y—-p|=p}, forsomep€R’ and p>0,

and that a Euclidean disc is the intersection of some Euclidean ball B with a
plane containing its midpoint. Y €R’ is called a parallel body of the compact
convex set X, if there is a Euclidean ball B, centered at the origin, such that
Y = X + B. For the proof of the next result we shall use a few elementary facts
concerning the curvature of planar convex sets. The reader may consult 1,2,4]
for a general and thorough exposition of these matters.

ProrosiTiON 3. Let K CR® be a convex body which has the intersection

property. If bdK contains a linesegment, then K is a parallel body of some
linesegment.

ProoF. Choose a unit vector u €R* and the number a« >0 such that K u
and a satisfy Proposition 2. Then

(14) m.K is a Euclidean disc.

Otherwise let D be its circumscribed disc, the smallest Euclidean disc containing
w.K. Then there is an arc R Crelbd(#.K) whose endpoints r,,r, belong to
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relbd(D) and whose inner points all lie in relint D. By translating D in a
direction orthogonal to aff{r,,r,} we obtain a disc D,, congruent to D, which is
surrounded by 7K at some point p; € R. Similarly there is a disc D, congruent
to D, which surrounds 7.K at some point p,. This allows us to find an isometry p
of R’, carrying p; into py, such that 7K surrounds pm.K at p,. K N #.'[p;] is, by
our choice of u, a linesegment S; of length a. By the above construction, each
q E relint S, is a smooth point of K; let us denote by v the outer normal of K at
every g €relint S;. We choose an endpoint ¢, of S, and a point g, Erelint S;.
Denote by 7 the translation carrying x into x +(q: — gz, u)u. Then there is a
neighbourhood U of g, such that (U N 7pK)C(UNK), and (UN7pK)N
bd(U N K)CS.. Denote by L the line u* N Im(m,). We find a rotation o with
axis L + q, and some small angle, together with a small translation ¢ in direction
— v, such that K surrounds the convex body ¢arpK at some point g € relint S,
close to q. By Lemma 1, K would not have the intersection property. Thus (14) is
established. Now let w be a unit vector in R’ such that (u,w)=0. Let
X ClIm(m, ) be a Euclidean disc congruent to 7K, and set Y = S, + X where §,
is the linesegment mentioned above. Then

(15) m. K is pariel to Y.

Otherwise we find, by an argument similar to the one used for the proof of
(14), some point r Erelbd #,K and some translate X, of X such that X;
surrounds m,K at r. By the statement (12) of Proposition 2 there is a unique
point s € bd K such that 7, (s) = r. Let p be an isometry of R’ such that p(¢) = s
and =, [pK] = X\, where T is some linesegment in bd(K) and ¢ € relint(T). pK
obviously surrounds K at s, and, again by Lemma 1, K would not have the
intersection property. With this contradiction the statement (15) is established
for every w orthogonal to u. With the aid of [8] we derive from (14) and (15) that
K is homothetic to T+ B, where T is any linesegment in bd K and B a

Euclidean ball whose diameter coincides with that of m,(K). Proposition 3
follows.

Proposition 1 and Proposition 3 together yield our main result: If a convex
body K CR’ has the intersection property, then it is either a Euclidean ball or a
parallel body of some linesegment.

4. Questions

As the referee has pointed out, the following question remains open: is there a
convex surface S in R’ which intersects each of its directly congruent copies in a
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connected set, but does not bound a parallel set of some linesegment? I think
that such a surface does not exist, but have no full proof. Notice, however, that S
would have to be strictly convex, since no reflections are used in the proof of
Proposition 3. Under appropriate smoothness assumptions the nonexistence of S
can also be established by classical differential geometric methods. I have not
explored the corresponding problem in higher dimensions.
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