CONVEX SURFACES WHICH INTERSECT EACH CONGRUENT COPY OF THEMSELVES IN A CONNECTED SET

BY

PETER MANI-LEVITSKA *Mathematische Institut, Universitiit Bern, 3012 Bern, Switzerland*

ABSTRACT

Let $K \subset \mathbb{R}^3$ be a three-dimensional convex body such that, for every isometry ρ of \mathbb{R}^3 , the boundaries of K and ρK meet in a connected set. Then K is a parallel set of some possibly degenerate linesegment.

I. Introduction

Unless otherwise stated, we shall adopt the terminology of B. Grünbaum's book [6]. By a convex body in \mathbb{R}^3 we understand a compact convex subset of \mathbb{R}^3 with nonempty interior.

DEFINITION 1. A convex body K in \mathbb{R}^3 has the intersection property, if for every isometry ρ of \mathbb{R}^3 , the boundaries bd(K) and bd(ρ K) have a connected intersection.

It was asked by T. Bonnesen and W. Fenchel whether the Euclidean balls are characterized among all convex bodies in \mathbb{R}^3 by the intersection property, see page 141 of [3]. However, as H. Hadwiger [7] pointed out, each parallel body of a linesegment enjoys the same property. The question, whether there are any other examples, has been posed again by J. J. Schäffer [10], and shall be answered in the negative here. There are a number of further problems related to this result, two of which have been solved recently. P. Goodey [5] shows that a convex body K in \mathbb{R}^n for which bd(K) \cap int(gK) is a topological ball whenever g is a rigid motion, must be a Euclidean ball. Ch. Senn [11] characterizes the vector sums of a ray and a Euclidean ball as the only unbounded closed convex sets in \mathbb{R}^3 with the intersection property.

Received April 3, 1985 and in revised form October 9, 1985

2. Strictly convex bodies

Our main purpose here is a proof of the following result. Remember that a convex body K is called strictly convex, if every boundary point of K is an exposed point of K.

PROPOSITION 1. Let K be a convex body in \mathbb{R}^3 . If K is strictly convex and has *the intersection property, then K is a Euclidean ball.*

Let us first introduce some additional notation. If v is a unit vector in \mathbb{R}^3 we set $v^{\perp} = {x \in \mathbb{R}^3 : \langle x, v \rangle = 0}$ and denote by $\pi_v : \mathbb{R}^3 \to v^{\perp}$ the orthogonal projection onto v^{\perp} . The shadow boundary of a convex body K above the plane E is the set $\Sigma(K, E)$ of all points $p \in K$ for which $\pi_v(p) \in \text{relbd}(\pi_v[K])$, where v is a unit vector with $v^{\perp} = E$.

DEFINITION 2. Let K and L be closed convex sets in \mathbb{R}^3 , having the same affine hull E. We say that K surrounds L at the point $p \in E$, if there is an open neighbourhood U of p in E such that $L \cap U$ is a proper subset of $K \cap U$, and $(\text{relbd } K) \cap L \cap U$ is compact and contains the point p.

With this notion we can express our basic condition for a convex body to have the intersection property.

LEMMA 1. Let K be a convex body in \mathbb{R}^3 . Assume that there is an isometry ρ of \mathbb{R}^3 and a boundary point p of K such that pK surrounds K at p. Then K does not *have the intersection property.*

PROOF. Let U be an open neighbourhood of p in \mathbb{R}^3 such that $(\rho K \cap U)$ $(K \cap U)$, and $(bd\rho K) \cap K \cap U$ is compact, with $p \in (bd\rho K) \cap K \cap U \neq bd\rho K$. There is a point q in $(bd\rho K \cap U)\K$, and therefore we have $L^3(\rho K \cap U)$ $L^3(K \cap U)$, where L^3 denotes the Lebesgue measure in \mathbb{R}^3 . Since ρK has the same Lebesgue measure as K, we cannot have $\rho K \supset K$, thus we find a point r in $(\text{bd } \rho K \cap \text{bd } K)$ v. r and p lie in different components of $\text{bd } \rho K \cap \text{bd } K$, and K does not have the intersection property.

PROOF OF PROPOSITION 1. Let us assume that K is a counterexample to Proposition 1. An elementary argument shows that no ellipsoid other than a Euclidean ball has the intersection property, so at least one shadow boundary $\Sigma(K, E)$ of K is not contained in a plane [2]. We may assume $E = \mathbb{R}^2 = \text{lin}\{e_1, e_2\}$ where we set $e_1 = (1,0,0), e_2 = (0,1,0), e_3 = (0,0,1).$ Denoting by s the reflection at the plane \mathbb{R}^2 we set, for $\tau \in \mathbb{R}$, $K(\tau)$: = $s[K] + \tau e_3$. For $p \in D$: = $\pi_{\epsilon_2}[K]$ we set

$$
h(p) := \inf\{\lambda : p + \lambda e_3 \in K\} \text{ and } h(\tau)(p) := \inf\{\lambda : p + \lambda e_3 \in K(\tau)\}, \quad \tau \in \mathbb{R}.
$$

We consider the sets $L(\tau)$: = { $p \in D$: $h(p) < h(\tau)(p)$ } and $M(\tau)$: = ${p \in D : h(p) > h(\tau)(p)}$, $\tau \in \mathbb{R}$. Notice that, for $\tau \leq \sigma$, we always have $L(\tau) \subset L(\sigma)$, $M(\tau) \supset M(\sigma)$. Set

$$
\tau_1 := \inf \{ \langle x, e_3 \rangle : x \in \Sigma(K, \mathbf{R}^2) \} \quad \text{and} \quad \tau_2 := \sup \{ \langle x, e_3 \rangle : x \in \Sigma(K, \mathbf{R}^2) \}.
$$

Then, clearly, $L(\tau) \cap \text{relbd}(D) \neq \emptyset$, $M(\tau) \cap \text{relbd}(D) \neq \emptyset$, whenever $2\tau_1 < \tau <$ $2\tau_2$. Consider a unit vector $u \in \mathbb{R}^2$, and let us say that $X \subset \mathbb{R}^2$ is dominated by D in direction u, if $X \subset \text{int } D + R$, where $R = {\lambda u : \lambda \ge 0}$ is the ray issuing from the origin in direction u . We want to show

(1) there are a number τ with $2\tau_1 < \tau < 2\tau_2$, a component C of $L(\tau) \cup M(\tau)$, and a unit vector $u \in \mathbb{R}^2$ such that cl(C) is dominated by D in direction u.

Let us say that a subset N of the circle $S^1 = \{x \in \mathbb{R}^2 : ||x|| = 1\}$ is spanning, if $0 \in \text{conv}(N)$ but $0 \notin \text{conv}(M)$ for any $M \subset N$, $M \neq N$. A spanning set $N \subset S^1$ then consists of 2 or 3 elements. A vector $n \in S¹$ is called an outer normal of D at $p \in \text{relbd}D$, if $\langle n, p \rangle \ge \langle n, q \rangle$ for all $q \in D$. We now choose $\tau \in (2\tau_1, 2\tau_2)$ and a component C of $L(\tau)$. If τ and C do not satisfy (1), we find a spanning subset N of $S¹$ and, for every $n \in N$, a point $p(n) \in cl(C) \cap relbd D$ such that n is an outer normal of D at $p(n)$. Since $cl[L(\tau) \cap relbd D] \subset L(\sigma)$ for all σ with $\tau < \sigma < 2\tau_2$, we may assume, by enlarging τ if needed, that $\{p(n): n \in N\}$ is contained in $C \cap$ relbd (D) .

Set $Y = \{\lambda n : n \in N, \lambda \in [0,1]\}\$. C is an open connected subset of D, so there exists an injective continuous map $\phi: Y \to C$ with $\phi(n) = p(n)$ for all $n \in N$ and Im(ϕ) \cap relbd(D) = {p(n): $n \in N$ }. Since $\tau \in (2\tau_1, 2\tau_2)$, we have $M(\tau) \neq \emptyset$. Choose a component A of $M(\tau)$, and notice $A \cap Im(\phi) = \emptyset$. By the definition of ϕ and because $D = \pi_{\epsilon_2}[K]$ inherits the strict convexity from K, we find $u \in S^1$ such that $cl(A)$ is dominated by D in direction u, and (1) follows.

Let us set, for $\tau \in \mathbb{R}$ and $x \in \mathbb{R}^2$,

$$
K(\tau, x) := K(\tau) + x, D(\tau, x) := \pi_{e_3}[K(\tau, x)],
$$

and denote by $h(\tau, x): D(\tau, x) \to \mathbb{R}$ the height function, given by

$$
h(\tau,x)(p):=\inf\{\lambda:p+\lambda e_3\in K(\tau,x)\},\qquad p\in D(\tau,x).
$$

By an arc we understand as usual a homeomorphic image of some compact interval $I \subset \mathbb{R}$.

Now we choose τ , C and u according to (1), and assume first that C is a component of $L(\tau)$, with $C \cap \text{relbd}(D) \neq \emptyset$.

$$
C_0:=\{p\in C: h(\tau)(p)-h(p)\geq h(\tau)(q)-h(q)\,\text{for all }q\in C\}
$$

is a compact subset of C, so we find a pair $\{s,t\}$ of points in $C \cap \text{relbd}(D)$ and arcs $P \subset C \setminus C_0$, $Q \subset \text{cl}(\mathbb{R}^2 \setminus D)$, both with end points $\{s, t\}$, such that $\{s, t\}$ = $P \cap \text{relbd}(D) = Q \cap D$, Q is dominated by D in direction u, and C_0 belongs to the bounded component of $\mathbb{R}^2 \setminus (P \cup Q)$.

By the definition of C_0 and P, there exists a number $\sigma \in (-\infty, \tau)$ such that $h(\sigma)(q) > h(q)$ for all $q \in C_0$, but $h(\sigma)(p) < h(p)$ for all $p \in P$. Further, if we choose $\beta > 0$ sufficiently small, we have $P \subset D(\sigma, \beta\mu)$ and $h(\sigma, \beta u)(p) < h(p)$ for all $p \in P$, whereas $h(\sigma, \beta u)(q) > h(q)$, $q \in C_0$. Let us also ensure that the arc Q mentioned above satisfies $(Q \setminus \{s,t\}) \subset (D(\sigma,\beta u)\setminus D)$. $J := P \cup Q$ is a closed Jordan curve contained in $D(\sigma, \beta u)$. For each point $p \in J$ we have either $K \cap \pi_{\epsilon_1}^{-1}[p] = \emptyset$ or $h(p) > h(\sigma, \beta u)(p)$, whereas there is some q in the bounded component B of \mathbb{R}^2 such that $q \in D$ and $h(q) < h(\sigma, \beta u)(q)$. Choose $q_0 \in B \cap D$ such that

$$
\delta := h(\sigma, \beta u)(q_0) - h(q_0) \geq h(\sigma, \beta u)(q) - h(q) \quad \text{for all } q \in B \cap D.
$$

Then $K(\sigma, \beta u)$ surrounds $K + \delta e_3$ at $q_0 + (h(q_0) + \delta)e_3$, contradicting Lemma 1. The case $C \subset L(\tau)$, $C \cap \text{relbd}(D) = \emptyset$, is trivial. We find a Jordan curve $J \subset C$ and a number $\sigma \in \mathbb{R}$ with $h(p) > h(\sigma)(p)$ for all $p \in J$ and $h(q) < h(\sigma)(q)$ for some q in the bounded component of $\mathbb{R}^2 \setminus J$. Finally, if C is a component of $M(\tau)$, we just interchange the roles of K and $s[K]$. Thus Proposition 1 is established.

3. Bodies which are not strictly convex

Throughout this section we assume that $K \subset \mathbb{R}^3$ is a convex body, containing a linesegment S in its boundary. If $u \in \mathbb{R}^3$ is a unit vector, we denote by $I(u)$ the set of all affine isometries $\rho : \mathbb{R}^3 \to \mathbb{R}^3$ which preserve the scalar product with u, such that $\langle \rho x, u \rangle = \langle x, u \rangle$ for all $\rho \in I(u)$ and $x \in \mathbb{R}^3$. Furthermore we set, for $\tau \in \mathbb{R}$, $K(u, \tau) := \{p \in K : (p, u) = \tau\}$. Recall that u is an outer normal of K at $p \in bd K$, if $\langle u, p \rangle \geq \langle u, q \rangle$ for all $q \in K$.

LEMMA 2. *With the above notation, let u be an outer normal of K at some point* $p \in$ relint *S.* Assume that, given any neighbourhood N of 0 in **R**, there are a *number* τ < 0 *in N* and an isometry $\rho \in I(u)$ such that, with τ_0 : = $\langle p, u \rangle + \tau$,

(2) relint $S \cap$ relint ρS *consists of exactly one point,*

(3) [relint $K(u, \tau_0)$] $\rangle \rho K(u, \tau_0)$ and $[relint pK(u, \tau_0)]\setminus K(u, \tau_0)$ are both connected.

Then K does not have the intersection property.

PROOF. Call $q \in bd(K)$ a smooth point of K if there is a unique outer normal of K at q, and call q a vertex of K if the set of all outer normals of K at q is twodimensional. Notice first

(4) if K has the intersection property, then there exists no vertex of K .

Otherwise let q_1 be a vertex of K. Let $A_2 \subset K$ be a maximal Euclidean ball contained in K, and choose $q_2 \in A_2 \cap \text{bd}(K)$. By definition of q_1 there is a Euclidean ball A_1 which surrounds K at q_1 , and which has a smaller radius than A_2 . Hence we find an isometry ρ of \mathbb{R}^3 such that $\rho q_1 = q_2$ and $\rho A_1 \subset A_2$. *K* surrounds ρK at q_2 , which is a contradiction to Lemma 1, and (4) follows. Similarly

(5) if K has the intersection property, then there exists no twodimensional face of K.

Now let $p \in \text{relint}(S)$ and the unit vector $u \in \mathbb{R}^3$ satisfy the assumptions of Lemma 2. We can suppose that p is the origin 0 of \mathbb{R}^3 .

(6) We may also assume $0 = \pi_u(p) \in$ relint $\pi_u(K)$.

If 0 is a smooth point of K, (6) is satisfied. So let us assume that H_1 and $H_2 \neq H_1$ are supporting planes of K, with $0 \in H_1 \cap H_2$, and denote by H_i^+ the closed halfspace bounded by H_i and containing K. There exists some outer normal v of K at 0 such that $0 \in \text{relint}(\pi_v(K))$. We also choose a unit vector w such that $\ln\{w\}$ and aff S are parallel lines. If we find, in every neighbourhood N of 0 in R, some number $\tau < 0$ such that $K(v, \tau)$ does not contain a linesegment T whose affine hull is parallel to aff S, then v satisfies (2) and (3). The corresponding isometry $\rho \in I(v)$ consists of a translation $x \mapsto x + \lambda w$, $\lambda \neq 0$, small, followed by a rotation with axis lin{v} and a sufficiently small angle. Otherwise, since $\pi_w(K)$ has at most countably many vertices, we find $\tau < 0$ in N such that $K(v, \tau)$ contains a linesegment T with aft (T) parallel to aff S , and such that every $q \in$ relint(T) is a smooth point of K. Choose $q \in$ relint(T) arbitrarily, denote by H the unique supporting plane of K containing q , and by H^+ the closed halfspace which contains K and is bounded by H . Let r be an arbitrary endpoint of the linesegment S.

Let γ be an isometry of **R**³, such that $\gamma(r) = q$, $\gamma(H_1^* \cap H_2^*) \subset H^*$, $H \cap \gamma(H_1^* \cap H_2^*) = \text{aff}(T)$. Denoting by $L \subset H$ the line which is orthogonal to aff(T) and contains q, we choose a rotation β with axis L such that relint($\beta \gamma S$) \subset int(H⁺). Let α be a translation with $\alpha(H) \text{Cint}(H^+)$. If the angle of β is small enough, and α is chosen properly, the convex body K surrounds $\alpha\beta\gamma(K)$ at some point q' close to q . So, according to Lemma 1, K does not have the intersection property, and it remains to consider the case where (6) holds.

(7) We may assume $S = \pi_u(S) \subset \text{relint}(\pi_u K)$.

In view of (6) we find, if (7) does not hold, an endpoint r of S and a supporting hyperplane H of K with $r \in H$ and $S \not\subset H$. If $0 \in$ relint(S) is not a smooth point of K, r is a vertex of K, a case which may be excluded by (4). If 0 is smooth we denote by L the supporting plane of K which contains 0 and denote by H^+ and L^+ the closed halfspaces bounded by H and L containing K. By (5) we may assume $H \cap L \cap K = \{r\}$. As above we find an isometry γ of \mathbb{R}^3 such that

$$
\gamma(r) = 0
$$
, $\gamma(H^+ \cap L^+) \subset L^+$, $L \cap \gamma(H^+ \cap L^+) = \text{aff}(S)$.

Then K surrounds γK at q, and this case can again be excluded by Lemma 1. In view of (7) we find a neighbourhood N of 0 in \bf{R} such that

(8)
$$
\pi_u(K(u, \sigma)) \subset \text{relint } \pi_u(K)
$$
, for every $\sigma \in N$.

Let us choose $\tau < 0$ in N and $\rho \in I(u)$ such that they satisfy the conditions (2) and (3) of our lemma. If r_1 and r_2 are the endpoints of the linesegment S, we denote by $C(r_i)$ the unique bounded component of $\mathbb{R}^3 \setminus (\text{bd } K \cup \text{bd } \rho K)$ which contains r_i in its closure. Then we may assume that

(9) one of the sets $C(r_i)$, $i \in \{1,2\}$, satisfies

$$
\langle x, u \rangle \in (0, \tau), \quad \text{all } x \in C(r_i).
$$

Otherwise we find piecewise linear maps $\phi_i:[0,1] \rightarrow K$ such that $\phi_i(0) = r_i$, $\langle \phi_i(1), u \rangle = \tau$, Im $\phi_i \subset \{r_i\} \cup C(r_i)$, and such that there exists, for every $\xi \in (0,1]$, a number $\sigma \in [\tau,0)$ satisfying $\phi_i(\xi) \in [\text{relint } K(u,\sigma)]\backslash [\rho K(u,\sigma)]$. By condition (3) there is also a piecewise linear map ψ : $[0,1] \rightarrow$ [relint $K(u,\tau)$] $\langle \rho K(u,\tau) \rangle$ with $\psi(0) = \phi_1(1)$ and $\psi(1) = \phi_2(1)$. We may assume that $A =$ $\pi_{\mu}[\text{Im}(\phi_1) \cup \text{Im}(\phi_2) \cup \text{Im}(\psi)]$ is disjoint to $S \cap \rho S$, hence there exists a Jordan curve $J \subset A \cup S$ containing the point of $S \cap \rho S$. Setting, for $x \in \text{Im}(\pi_u)$ and a convex body $B \subset \mathbb{R}^3$,

$$
h(B)[x]
$$
: = inf $\{\lambda : x - \lambda u \in B\}$ if $x \in \pi_u(B)$, and $h(B)[x]$: = ∞ otherwise

we derive from (8) that $K(u, \xi) \subset K(u, \eta)$, whenever $0 \ge \xi \ge \eta \ge \tau$, and therefore, by the construction of J,

(10) $h(K)[x] \leq h(\rho K)[x]$, for every $x \in J$.

Let D be the bounded component of $\text{Im}(\pi_u)/J$. By (2) there is a point $q \in D \cap \rho S$, and obviously $0 = h(\rho K)[q] < h(K)[q]$. Setting μ : $\sup\{h(K)[q] - h(\rho K)[q] : q \in \text{cl}D\}$ we have $\mu > 0$ and derive from (10) that $h(K)[q_0]-h(\rho K)[q_0]=\mu$, for some $q_0\in D$. Again using (10) we see that K surrounds $\rho K - \mu u$ at the point $q_0 - (h(K)[q_0])u$. By Lemma 1, K would not have the intersection property. So (9) is established. Assume, then, $\langle x, u \rangle \in (0, \tau)$ for every $x \in C(r_1)$. Consider a point x in the boundary of $\pi_u(C(r_1)) \subset \text{Im}(\pi_u)$, and set $y = x - (h(K)[x])u$. By (8) we have $\langle u, w \rangle > 0$, for every outer normal vector w of K at y. Hence $y \in bd(\rho K)$, or else x would belong to $\pi_u(C(r_1))$ itself, rather than to its boundary. We conclude that $h(K)[x] = h(\rho K)[x]$, whereas, obviously, $0 = h(K)[r_1] < h(\rho K)[r_1]$. Since $r_1 \in \pi_u(C(r_1))$ we find, as above, a point $q_0 \in \pi_u(C(r_1))$ and a number $\mu > 0$ such that ρK surrounds $K-\mu u$ at $q_0-(h(\rho K)[q_0])u$. By Lemma 1, K does not have the intersection property, and Lemma 2 is established.

Recall that $K \subset \mathbb{R}^3$ is a convex body having a linesegment S in its boundary.

PROPOSITION 2. If K has the intersection property, there exist a unit vector $u \in \mathbb{R}^3$ and a number $\alpha > 0$ such that

- (11) *every point p in the shadow boundary* $\Sigma(K, \text{Im}(\pi_u))$ *lies in a linesegment L C* bd *K of length a, whose aflfine hull is a parallel to* $\text{lin}\{u\}$,
- (12) whenever $L \subset bd K$ is a linesegment, aff L is a parallel to $\ln\{u\}$.

PROOF. Choose the unit vector $u \in \mathbb{R}^3$ such that lin{u} is parallel to aff S, where S is some linesegment in bd K. If a and b are points in \mathbb{R}^3 we set, for $T = \text{conv}\{a, b\}, \lambda(T) := ||a - b||$. Define $\alpha > 0$ by

 $\alpha := \sup \{ \lambda(K \cap \pi_u^{-1}[p]) : p \in \text{relbd } \pi_u(K) \}.$

The set $X = \{p \in \text{relbd } \pi_u(K) : \lambda(K \cap \pi_u^{-1}[p]) = \alpha\}$ is nonvoid and compact. We want to show

(13) X is open in relbd $\pi_u(K)$.

Otherwise there is $p \in X$ and a sequence $(q_i)_{i \in N}$ of points $q_i \in \text{relbd }\pi_u(K)$, converging to p , such that

$$
\lambda(K \cap \pi_u^{-1}[q_i]) = \beta_i < \alpha, \quad \text{for every } i.
$$

We may assume that $u = (1,0,0)$, p is the origin 0 of \mathbb{R}^3 and belongs to relint S, $S = K \cap \pi_u^{-1}[p]$, and $v = (0, 0, -1)$ is an outer normal of K at 0. Let N be a neighbourhood of 0 in **R**. We find a number $\tau < 0$ in N and an index i such that $\langle q_i, v \rangle = \tau$. Choose γ in the open interval (β_i, α) and define the translation ϕ by $\phi(x) = x + \gamma u$. Since $\lambda(K \cap \pi_u^{-1}[q_i]) = \beta_i < \gamma$ and $\langle q_i, v \rangle = \tau$, one of the components of $relbd(K(v, \tau)) \cap relbd(\phi K(v, \tau))$ consists of a single point, whereas $S \cap \phi S$ is a nondegenerate linesegment. We can choose a point $m \in$ relint(S \cap ϕ S) and a rotation ρ with axis $m + \text{lin}\lbrace v \rbrace$ and sufficiently small angle $\varepsilon \neq 0$ such that $\left[\text{relint}(K(v, \tau))\right]$ $\rho\phi(K(v, \tau))$ and $\left[\text{relint}(\rho\phi(K(v, \tau)))\right]$ $K(v, \tau)$ are both connected. Here, if one component of relbd($K(v, \tau)$) \cap relbd($\phi K(v, \tau)$) is a linesegment, we have to choose the sign of ε appropriately. Then $v, S, 0, N, \tau$ and $\rho\phi$ fulfil the requirements of Lemma 2, and K would not have the intersection property. So (13) follows. Since X is also compact and nonvoid it coincides with relbd($\pi_u(K)$), and (11) is established. If there were a linesegment L C bd K with aff L parallel to $\lim \{v\}$ for some unit vector $v \notin \{u, -u\}$, we could apply the analogue of the above argument with v replacing u and would conclude that K has a twodimensional face. But this contradicts Lemma 1, compare (5) in the proof of Lemma 2. The relation (12), and Proposition 2, are thus established.

Recall that $B \subset \mathbb{R}^3$ is a Euclidean ball if

$$
B = \{ y \in \mathbb{R}^3 : ||y - p|| \le \rho \}, \qquad \text{for some } p \in \mathbb{R}^3 \quad \text{and} \quad \rho > 0,
$$

and that a Euclidean disc is the intersection of some Euclidean ball B with a plane containing its midpoint. $Y \in \mathbb{R}^3$ is called a parallel body of the compact convex set X , if there is a Euclidean ball B , centered at the origin, such that $Y = X + B$. For the proof of the next result we shall use a few elementary facts concerning the curvature of planar convex sets. The reader may consult [1,2,4] for a general and thorough exposition of these matters.

PROPOSITION 3. Let $K \subset \mathbb{R}^3$ *be a convex body which has the intersection property. If* bd *K contains a linesegment, then K is a parallel body of some linesegment.*

PROOF. Choose a unit vector $u \in \mathbb{R}^3$ and the number $\alpha > 0$ such that K, u and α satisfy Proposition 2. Then

(14) $\pi_u K$ is a Euclidean disc.

Otherwise let D be its circumscribed disc, the smallest Euclidean disc containing $\pi_u K$. Then there is an arc R C relbd($\pi_u K$) whose endpoints r_1, r_2 belong to

Vol. 54, 1986 CONVEX SURFACES 79

relbd (D) and whose inner points all lie in relint D. By translating D in a direction orthogonal to aff ${r_1, r_2}$ we obtain a disc D_1 , congruent to D, which is surrounded by $\pi_{\mu} K$ at some point $p_1 \in R$. Similarly there is a disc D_2 , congruent to D, which surrounds $\pi_u K$ at some point p_2 . This allows us to find an isometry ρ of \mathbb{R}^3 , carrying p_2 into p_1 , such that $\pi_u K$ surrounds $\rho \pi_u K$ at p_1 . $K \cap \pi_u^{-1}[p_i]$ is, by our choice of u, a linesegment S_i of length α . By the above construction, each $q \in$ relint S_1 is a smooth point of K; let us denote by v the outer normal of K at every $q \in$ relint S_1 . We choose an endpoint q_2 of S_2 and a point $q_1 \in$ relint S_1 . Denote by τ the translation carrying x into $x + \langle q_1 - q_2, u \rangle u$. Then there is a neighbourhood U of q_1 such that $(U \cap \tau pK) \subset (U \cap K)$, and $(U \cap \tau pK) \cap$ $\mathrm{bd}(U \cap K) \subset S_1$. Denote by L the line $u^{\perp} \cap \mathrm{Im}(\pi_v)$. We find a rotation σ with axis $L + q_1$ and some small angle, together with a small translation ϕ in direction $-v$, such that K surrounds the convex body $\phi \sigma \tau \rho K$ at some point $q \in$ relint S_1 , close to q . By Lemma 1, K would not have the intersection property. Thus (14) is established. Now let w be a unit vector in \mathbb{R}^3 such that $\langle u, w \rangle = 0$. Let $X \subset \text{Im}(\pi_{w})$ be a Euclidean disc congruent to $\pi_{u}K$, and set $Y = S_{1} + X$, where S_{1} is the linesegment mentioned above. Then

(15) $\pi_w K$ is par "lel to Y.

Otherwise we find, by an argument similar to the one used for the proof of (14), some point $r \in \text{relbd } \pi_w K$ and some translate X_1 of X such that X_1 surrounds $\pi_{\nu}K$ at r. By the statement (12) of Proposition 2 there is a unique point $s \in bd K$ such that $\pi_w(s) = r$. Let ρ be an isometry of \mathbb{R}^3 such that $\rho(t) = s$ and $\pi_{w}[\rho K] = X_1$, where T is some linesegment in bd(K) and $t \in \text{relint}(T)$. ρK obviously surrounds K at s, and, again by Lemma 1, K would not have the intersection property. With this contradiction the statement (15) is established for every w orthogonal to u. With the aid of $[8]$ we derive from (14) and (15) that K is homothetic to $T + B$, where T is any linesegment in bd K and B a Euclidean ball whose diameter coincides with that of $\pi_u(K)$. Proposition 3 follows.

Proposition 1 and Proposition 3 together yield our main result: If a convex body $K \subset \mathbb{R}^3$ has the intersection property, then it is either a Euclidean ball or a parallel body of some linesegment.

4. Questions

As the referee has pointed out, the following question remains open: is there a convex surface S in \mathbb{R}^3 which intersects each of its *directly* congruent copies in a

80 **P. MANI-LEVITSKA** Isr. J. Math.

connected set, but does not bound a parallel set of some linesegment? I think that such a surface does not exist, but have no full proof. Notice, however, that S would have to be strictly convex, since no reflections are used in the proof of Proposition 3. Under appropriate smoothness assumptions the nonexistence of S can also be established by classical differential geometric methods. I have not explored the corresponding problem in higher dimensions.

REFERENCES

1. A. D. Aleksandrov, Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it, Leningrad State Univ. Annals, Math. Ser. 6 (1939), 3-35.

2. W. Blaschke, *Kreis und Kugel,* Chelsea, New York, 1949.

3. T. Bonnesen and W. Fenchel, *Theorie der konvexen K6rper,* Ergeb. Math. Grenzgeb. 3, Springer, Berlin, 1935.

4. H. Busemann, *Convex Sur[aces,* Interscience, New York, 1958.

5. P. Goodey, *Connectivity and freely rolling convex bodies,* manuscript, 1982.

6. B. Griinbaum, *Convex Polytopes,* Interscience, New York-London-Sidney, 1967.

7. H. Hadwiger, letters to W. Blaschke, 1939 and 1942.

8. H. Hadwiger, *Seitenrisse konvexer K6rper und Homothetie,* Elem. Math. 18 (1963), 97-98.

9. C. A. Rogers, *Sections and projections of convex bodies*, Portugal. Math. 24 (1965), 97-103.

10. J. J. Schäffer, oral communication, LMS Durham Symposium "Relations between finite and infinite dimensional Convexity", 1975.

11. Ch. Senn, *Ober]liichenschnitteigenscha[t kongruenter konvexer unbeschriinkter K6rper,* Lizenziatsarbeit, Bern, 1982.